Logo

Lectures on complex geometry, Calabi-Yau manifolds and toric geometry

Small book cover: Lectures on complex geometry, Calabi-Yau manifolds and toric geometry

Lectures on complex geometry, Calabi-Yau manifolds and toric geometry
by

Publisher: arXiv
Number of pages: 63

Description:
These are introductory lecture notes on complex geometry, Calabi-Yau manifolds and toric geometry. We first define basic concepts of complex and Kahler geometry. We then proceed with an analysis of various definitions of Calabi-Yau manifolds. The last section provides a short introduction to toric geometry.

Home page url

Download or read it online for free here:
Download link
(530KB, PDF)

Similar books

Book cover: Geometry in PhysicsGeometry in Physics
by
Contents: Exterior Calculus (Exterior Algebra, Differential forms in Rn, Metric, Gauge theory); Manifolds (Basic structures, Tangent space); Lie groups (Lie group actions, Lie algebras, Lie algebra actions, From Lie algebras to Lie groups).
(7232 views)
Book cover: Edinburgh Lectures on Geometry, Analysis and PhysicsEdinburgh Lectures on Geometry, Analysis and Physics
by - arXiv
These notes are based on a set of six lectures that the author gave in Edinburgh and they cover some topics in the interface between Geometry and Physics. They involve some unsolved problems and they may stimulate readers to investigate them.
(5154 views)
Book cover: Topology and Physics: A Historical EssayTopology and Physics: A Historical Essay
by - arXiv
In this essay we wish to embark on the telling of a story which, almost certainly, stands only at its beginning. We shall discuss the links and the interaction between one very old subject, physics, and a much newer one, topology.
(8701 views)
Book cover: Differential Geometry in PhysicsDifferential Geometry in Physics
by - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(12871 views)