**Complex Multiplication**

by J. S. Milne

2006**Number of pages**: 113

**Description**:

These are preliminary notes for a modern account of the theory of complex multiplication. The reader is expected to have a good knowledge of basic algebraic number theory, and basic algebraic geometry, including abelian varieties.

Download or read it online for free here:

**Download link**

(930KB, PDF)

## Similar books

**A Course In Algebraic Number Theory**

by

**Robert B. Ash**-

**University of Illinois**

Basic course in algebraic number theory. It covers the general theory of factorization of ideals in Dedekind domains, the use of Kummerâ€™s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc.

(

**10698**views)

**An Introduction to Algebraic Number Theory**

by

**F. Oggier**-

**Nanyang Technological University**

Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.

(

**6470**views)

**Lectures on Topics in Algebraic Number Theory**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These lecture notes give a rapid introduction to some basic aspects of Algebraic Number Theory with as few prerequisites as possible. Topics: Field Extensions; Ring Extensions; Dedekind Domains and Ramification Theory; Class Number and Lattices.

(

**6479**views)

**Heegner Points and Rankin L-Series**

by

**Henri Darmon, Shou-Wu Zhang**-

**Cambridge University Press**

This volume has the Gross-Zagier formula and its avatars as a common unifying theme. It covers the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics.

(

**5620**views)