Logo

Lecture Notes on Differentiable Manifolds

Small book cover: Lecture Notes on Differentiable Manifolds

Lecture Notes on Differentiable Manifolds
by

Publisher: National University of Singapore
Number of pages: 78

Description:
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; Tangent Bundles and Vector Fields; Riemann Metric and Cotangent Bundles; Tensor Bundles, Tensor Fields and Differential Forms; Orientation and Integration; The Exterior Derivative and the Stokes Theorem.

Home page url

Download or read it online for free here:
Download link
(500KB, PDF)

Similar books

Book cover: Symplectic GeometrySymplectic Geometry
by - Princeton University
An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.
(7897 views)
Book cover: Introduction to Differential TopologyIntroduction to Differential Topology
by - Boise State University
This is a preliminary version of introductory lecture notes for Differential Topology. We try to give a deeper account of basic ideas of differential topology than usual in introductory texts. Many examples of manifolds are worked out in detail.
(5579 views)
Book cover: Introduction to Symplectic and Hamiltonian GeometryIntroduction to Symplectic and Hamiltonian Geometry
by
The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.
(8964 views)
Book cover: Differential Topology and Morse TheoryDifferential Topology and Morse Theory
by - University of Sheffield
These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.
(5683 views)