Logo

Lecture Notes on Differentiable Manifolds

Small book cover: Lecture Notes on Differentiable Manifolds

Lecture Notes on Differentiable Manifolds
by

Publisher: National University of Singapore
Number of pages: 78

Description:
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; Tangent Bundles and Vector Fields; Riemann Metric and Cotangent Bundles; Tensor Bundles, Tensor Fields and Differential Forms; Orientation and Integration; The Exterior Derivative and the Stokes Theorem.

Home page url

Download or read it online for free here:
Download link
(500KB, PDF)

Similar books

Book cover: Differential Topology and Morse TheoryDifferential Topology and Morse Theory
by - University of Sheffield
These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.
(6118 views)
Book cover: Introduction to Differential Topology, de Rham Theory and Morse TheoryIntroduction to Differential Topology, de Rham Theory and Morse Theory
by - Radboud University
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.
(6780 views)
Book cover: Lectures on Symplectic GeometryLectures on Symplectic Geometry
by - Springer
An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. The text is written in a clear, easy-to-follow style.
(10294 views)
Book cover: Symplectic GeometrySymplectic Geometry
by - Princeton University
An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.
(8274 views)