Logo

Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem

Large book cover: Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem

Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem
by

Publisher: Publish or Perish Inc.
ISBN/ASIN: 0849378745
Number of pages: 536

Description:
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary.

Home page url

Download or read it online for free here:
Download link
(DVI, PS)

Similar books

Book cover: Mathematical Methods of PhysicsMathematical Methods of Physics
- Wikibooks
A book on common techniques of applied mathematics that are often used in theoretical physics. It may be accessible to anyone with beginning undergraduate training in mathematics and physics. It is useful for anyone wishing to study advanced Physics.
(6507 views)
Book cover: Lie Theory and Special FunctionsLie Theory and Special Functions
by - Academic Press
The book studies the role played by special function theory in the formalism of mathematical physics. It demonstrates that special functions which arise in mathematical models are dictated by symmetry groups admitted by the models.
(8951 views)
Book cover: Mathematics for the Physical SciencesMathematics for the Physical Sciences
by - Dover Publications
The book for the advanced undergraduates and graduates in the natural sciences. Vector spaces and matrices, orthogonal functions, polynomial equations, asymptotic expansions, ordinary differential equations, conformal mapping, and extremum problems.
(37557 views)
Book cover: Topics in Spectral TheoryTopics in Spectral Theory
by - McGill University
The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.
(5443 views)