Logo

Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem

Large book cover: Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem

Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem
by

Publisher: Publish or Perish Inc.
ISBN/ASIN: 0849378745
Number of pages: 536

Description:
This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary.

Home page url

Download or read it online for free here:
Download link
(DVI, PS)

Similar books

Book cover: Topics in Spectral TheoryTopics in Spectral Theory
by - McGill University
The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.
(5596 views)
Book cover: Little Magnetic BookLittle Magnetic Book
by - arXiv
'Little Magnetic Book' is devoted to the spectral analysis of the magnetic Laplacian in various geometric situations. In particular the influence of the geometry on the discrete spectrum is analysed in many asymptotic regimes.
(2976 views)
Book cover: Clifford Algebra, Geometric Algebra, and ApplicationsClifford Algebra, Geometric Algebra, and Applications
by - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
(9918 views)
Book cover: Mathematical Physics IIMathematical Physics II
by - SISSA
These are lecture notes on various topics in analytic theory of differential equations: Singular points of solutions to analytic differential equations; Monodromy of linear differential operators with rational coefficients.
(11908 views)