**Differential Geometry: Lecture Notes**

by Dmitri Zaitsev

**Publisher**: Trinity College Dublin 2004**Number of pages**: 49

**Description**:

From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.

Download or read it online for free here:

**Download link**

(290KB, PDF)

## Similar books

**Differentiable Manifolds**

by

**Nigel Hitchin**

The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.

(

**11978**views)

**Lectures on Differential Geometry**

by

**Wulf Rossmann**-

**University of Ottawa**

This is a collection of lecture notes which the author put together while teaching courses on manifolds, tensor analysis, and differential geometry. He offers them to you in the hope that they may help you, and to complement the lectures.

(

**6448**views)

**Differential Geometry Of Three Dimensions**

by

**C.E. Weatherburn**-

**Cambridge University Press**

The book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.

(

**2230**views)

**Introduction to Differential Geometry and General Relativity**

by

**Stefan Waner**

Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.

(

**15673**views)