Model Categories and Simplicial Methods
by Paul Goerss, Kristen Schemmerhorn
Publisher: Northwestern University 2004
Number of pages: 46
Description:
There are many ways to present model categories, each with a different point of view. Here we'd like to treat model categories as a way to build and control resolutions. We're going to emphasize the analog of projective resolutions, simply because these are the sort of resolutions most people see first.
Download or read it online for free here:
Download link
(410KB, PDF)
Similar books
Higher Operads, Higher Categories
by Tom Leinster - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(13391 views)
by Tom Leinster - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(13391 views)
Category Theory Lecture Notes
by Daniele Turi - University of Edinburgh
These notes were written for a course in category theory. The course was designed to be self-contained, drawing most of the examples from category theory itself. It was intended for post-graduate students in theoretical computer science.
(12518 views)
by Daniele Turi - University of Edinburgh
These notes were written for a course in category theory. The course was designed to be self-contained, drawing most of the examples from category theory itself. It was intended for post-graduate students in theoretical computer science.
(12518 views)
Basic Category Theory
by Tom Leinster - arXiv
This introduction to category theory is for readers with relatively little mathematical background. At its heart is the concept of a universal property, important throughout mathematics. For each new concept a generous supply of examples is provided.
(9275 views)
by Tom Leinster - arXiv
This introduction to category theory is for readers with relatively little mathematical background. At its heart is the concept of a universal property, important throughout mathematics. For each new concept a generous supply of examples is provided.
(9275 views)
Combinatorics and Algebra of Tensor Calculus
by Sen Hu, Xuexing Lu, Yu Ye - arXiv
In this paper, we reveal the combinatorial nature of tensor calculus for strict tensor categories and show that there exists a monad which is described by the coarse-graining of graphs and characterizes the algebraic nature of tensor calculus.
(7081 views)
by Sen Hu, Xuexing Lu, Yu Ye - arXiv
In this paper, we reveal the combinatorial nature of tensor calculus for strict tensor categories and show that there exists a monad which is described by the coarse-graining of graphs and characterizes the algebraic nature of tensor calculus.
(7081 views)