Logo

Homotopy Theories and Model Categories

Small book cover: Homotopy Theories and Model Categories

Homotopy Theories and Model Categories
by

Publisher: University of Notre Dame
Number of pages: 56

Description:
This paper is an introduction to the theory of model categories, which was developed by Quillen. We have tried to minimize the prerequisites needed for understanding this paper; it should be enough to have some familiarity with CW-complexes, with chain complexes, and with the basic terminology associated with categories.

Download or read it online for free here:
Download link
(420KB, PDF)

Similar books

Book cover: E 'Infinite' Ring Spaces and E 'Infinite' Ring SpectraE 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra
by - Springer
The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.
(9215 views)
Book cover: Algebraic and Geometric TopologyAlgebraic and Geometric Topology
by - Springer
The book present original research on a wide range of topics in modern topology: the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.
(12800 views)
Book cover: Manifold TheoryManifold Theory
by - UCLA
These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.
(6733 views)
Book cover: The Homology of Iterated Loop SpacesThe Homology of Iterated Loop Spaces
by - Springer
A thorough treatment of homology operations and of their application to the calculation of the homologies of various spaces. The book studies an up to homotopy notion of an algebra over a monad and its role in the theory of iterated loop spaces.
(7219 views)