Logo

Introduction to Representation Theory

Small book cover: Introduction to Representation Theory

Introduction to Representation Theory
by

Publisher: University of Toronto
Number of pages: 73

Description:
Contents: Representation Theory of Groups - Algebraic Foundations; Representations of Finite Groups; Representations of SL2(Fq); Representations of Finite Groups of Lie Type; Topological Groups, Representations, and Haar Measure; Representations of Compact Groups.

Home page url

Download or read it online for free here:
Download link
(460KB, PDF)

Similar books

Book cover: An Elementary Introduction to Groups and RepresentationsAn Elementary Introduction to Groups and Representations
by - arXiv
An elementary introduction to Lie groups, Lie algebras, and their representations. Topics include definitions and examples of Lie groups and Lie algebras, the basics of representations theory, the Baker-Campbell-Hausdorff formula, and more.
(19775 views)
Book cover: Representations of Reductive p-adic GroupsRepresentations of Reductive p-adic Groups
by - University of Toronto
Contents: Valuations and local fields; Smooth representations of locally compact totally disconnected groups; Haar measure, convolution, and characters of admissible representations; Induced representations - general properties; etc.
(9000 views)
Book cover: Finite Group Representations for the Pure MathematicianFinite Group Representations for the Pure Mathematician
by - University of Minnesota
The book is intended to be used as a learning tool by people who do not know the subject. It is intended to be appropriate for non-specialists in the area of representation theory, such as those whose primary interest is topology or combinatorics.
(10432 views)
Book cover: Varieties of LatticesVarieties of Lattices
by - Springer
Presents the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The text includes preliminaries that make the material accessible to anyone with basic knowledge of universal algebra.
(12394 views)