Logo

Topics in topology: The signature theorem and some of its applications

Small book cover: Topics in topology: The signature theorem and some of its applications

Topics in topology: The signature theorem and some of its applications
by

Publisher: University of Notre Dame
Number of pages: 159

Description:
The author discusses several exciting topological developments that took place during the fifties decade which radically changed the way we think about many issues. Topics covered: Poincare duality, Thom isomorphism, Euler, Chern and Pontryagin classes, cobordisms groups, signature formula.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Equivariant Stable Homotopy TheoryEquivariant Stable Homotopy Theory
by - Springer
Our purpose is to establish the foundations of equivariant stable homotopy theory. We shall construct a stable homotopy category of G-spectra,and use it to study equivariant duality, equivariant transfer, the Burnside ring, and related topics.
(9819 views)
Book cover: Notes on the course Algebraic TopologyNotes on the course Algebraic Topology
by - University of Oregon
Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.
(5870 views)
Book cover: Lecture Notes on Motivic CohomologyLecture Notes on Motivic Cohomology
by - AMS
This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings.
(5797 views)
Book cover: Modern Algebraic TopologyModern Algebraic Topology
by - Macmillan
Contents: Preliminary algebraic background; Chain relationships; The absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; etc.
(3259 views)