Logo

Finite Rank Torsion Free Modules Over Dedekind Domains

Small book cover: Finite Rank Torsion Free Modules Over Dedekind Domains

Finite Rank Torsion Free Modules Over Dedekind Domains
by

Publisher: University of Hawaii

Description:
Contents: Modules Over Commutative Rings; Fundamentals; Rank-one Modules and Types; Quasi-Homomorphisms; The t-Socle and t-Radical; Butler Modules; Splitting Rings and Splitting Fields; Torsion Free Rings; Quotient Divisible Modules; Locally Free Modules; Near Isomorphism; Direct Sum Decompositions.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Group TheoryGroup Theory
by
Contents: Basic Definitions and Results; Free Groups and Presentations; Coxeter Groups; Automorphisms and Extensions; Groups Acting on Sets; The Sylow Theorems; Subnormal Series; Solvable and Nilpotent Groups; Representations of Finite Groups.
(8554 views)
Book cover: An Introduction to Group Theory: Applications to Mathematical Music TheoryAn Introduction to Group Theory: Applications to Mathematical Music Theory
by - BookBoon
In this text, a modern presentation of the fundamental notions of Group Theory is chosen, where the language of commutative diagrams and universal properties, so necessary in Modern Mathematics, in Physics and Computer Science, is introduced.
(6122 views)
Book cover: Group Theory: Birdtracks, Lie's, and Exceptional GroupsGroup Theory: Birdtracks, Lie's, and Exceptional Groups
by - Princeton University Press
A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.
(10295 views)
Book cover: Smarandache SemigroupsSmarandache Semigroups
by - American Research Press
The Smarandache semigroups exhibit properties of both a group and a semigroup simultaneously. This book assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties for reference.
(5768 views)