Logo

Advanced General Relativity

Small book cover: Advanced General Relativity

Advanced General Relativity
by

Publisher: Google Sites
Number of pages: 193

Description:
Topics include: Asymptotic structure of spacetime, conformal diagrams, null surfaces, Raychaudhury equation, black holes, the holographic principle, singularity theorems, Einstein-Hilbert action, energy-momentum tensor, Noether's theorem, tetrad (vierbein) formalism, spinor fields in curved spacetime, Hamiltonian formulation of GR, quantum cosmology.

Home page url

Download or read it online for free here:
Download link
(2.8MB, PDF)

Similar books

Book cover: Light Rays, Singularities, and All ThatLight Rays, Singularities, and All That
by - arXiv.org
This article is an introduction to causal properties of General Relativity. Topics include the Raychaudhuri equation, singularity theorems of Penrose and Hawking, the black hole area theorem, topological censorship, and the Gao-Wald theorem.
(2740 views)
Book cover: Advanced General RelativityAdvanced General Relativity
by - King's College London
Contents: Introduction; Manifolds and Tensors; General Relativity (Derivation, Diffeomorphisms as Gauge Symmetries, Weak Field Limit, Tidal Forces, ...); The Schwarzchild Black Hole; More Black Holes; Non-asymptotically Flat Solutions.
(8054 views)
Book cover: Dynamical and Hamiltonian Formulation of General RelativityDynamical and Hamiltonian Formulation of General Relativity
by - arXiv.org
This text introduces the reader to the reformulation of Einstein's field equations of General Relativity as a constrained evolutionary system of Hamiltonian type and discusses some of its uses, together with some technical and conceptual aspects.
(4171 views)
Book cover: Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equationsBeyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations
by - arXiv
This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.
(11777 views)