An Introduction to K-theory
by Eric M. Friedlander
2007
Number of pages: 78
Description:
The author's objective was to provide participants of the Algebraic K-theory Summer School an overview of various aspects of algebraic K-theory, with the intention of making these lectures accessible to participants with little or no prior knowledge of the subject.
Download or read it online for free here:
Download link
(multiple formats)
Similar books
18 Lectures on K-Theory
by Ioannis P. Zois - arXiv
We present introductory lectures on K-Theory covering its basic three branches, namely topological, analytic and Higher Algebraic K-Theory. The skeleton of these notes was provided by the author's notes from a graduate summer school on K-Theory.
(9719 views)
by Ioannis P. Zois - arXiv
We present introductory lectures on K-Theory covering its basic three branches, namely topological, analytic and Higher Algebraic K-Theory. The skeleton of these notes was provided by the author's notes from a graduate summer school on K-Theory.
(9719 views)
Lectures on Topics in Algebraic K-Theory
by Hyman Bass - Tata Institute of Fundamental Research
Topics: The exact sequence of algebraic K-theory; Categories of modules and their equivalences; The Brauer group of a commutative ring; The Brauer-Wall group of graded Azumaya algebras; The structure of the Clifford Functor.
(9368 views)
by Hyman Bass - Tata Institute of Fundamental Research
Topics: The exact sequence of algebraic K-theory; Categories of modules and their equivalences; The Brauer group of a commutative ring; The Brauer-Wall group of graded Azumaya algebras; The structure of the Clifford Functor.
(9368 views)
Algebraic K-Theory
by Hyman Bass - W. A. Benjamin
The algebraic K-theory presented here is concerned with the structure theory of projective modules, and of their automorphism groups. Thus, it is a generalization off the theorem asserting the existence and uniqueness of bases for vector spaces ...
(7712 views)
by Hyman Bass - W. A. Benjamin
The algebraic K-theory presented here is concerned with the structure theory of projective modules, and of their automorphism groups. Thus, it is a generalization off the theorem asserting the existence and uniqueness of bases for vector spaces ...
(7712 views)
An Introduction to K-theory and Cyclic Cohomology
by Jacek Brodzki - arXiv
An exposition of K-theory and cyclic cohomology. It begins with examples of various situations in which the K-functor of Grothendieck appears naturally, including the topological and algebraic K-theory, K-theory of C*-algebras, and K-homology.
(10364 views)
by Jacek Brodzki - arXiv
An exposition of K-theory and cyclic cohomology. It begins with examples of various situations in which the K-functor of Grothendieck appears naturally, including the topological and algebraic K-theory, K-theory of C*-algebras, and K-homology.
(10364 views)