Modular Forms, Hecke Operators, and Modular Abelian Varieties
by Kenneth A. Ribet, William A. Stein
Publisher: University of Washington 2003
Number of pages: 154
Description:
Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences; Abelian Varieties; Abelian Varieties Attached to Modular Forms; L-functions; The Birch and Swinnerton-Dyer Conjecture.
Download or read it online for free here:
Download link
(880KB, PDF)
Similar books

by Edward Nelson - Princeton Univ Pr
The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.
(19109 views)

by Edward Frenkel - Cambridge University Press
This book provides a review of an important aspect of the geometric Langlands program - the role of representation theory of affine Kac-Moody algebras. It provides introductions to such notions as vertex algebras, the Langlands dual group, etc.
(11044 views)

by Pete L. Clark - University of Georgia
The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.
(11059 views)

by Charles Ashbacher - Erhus Univ Pr
In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.
(13645 views)