Logo

Modular Forms, Hecke Operators, and Modular Abelian Varieties

Small book cover: Modular Forms, Hecke Operators, and Modular Abelian Varieties

Modular Forms, Hecke Operators, and Modular Abelian Varieties
by

Publisher: University of Washington
Number of pages: 154

Description:
Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences; Abelian Varieties; Abelian Varieties Attached to Modular Forms; L-functions; The Birch and Swinnerton-Dyer Conjecture.

Home page url

Download or read it online for free here:
Download link
(880KB, PDF)

Similar books

Book cover: Geometric Theorems and Arithmetic FunctionsGeometric Theorems and Arithmetic Functions
by - American Research Press
Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.
(12626 views)
Book cover: Elliptic Curves over Function FieldsElliptic Curves over Function Fields
by - arXiv
The focus is on elliptic curves over function fields over finite fields. We explain the main classical results on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.
(7227 views)
Book cover: Algorithms for Modular Elliptic CurvesAlgorithms for Modular Elliptic Curves
by - Cambridge University Press
The author describes the construction of modular elliptic curves giving an algorithm for their computation. Then algorithms for the arithmetic of elliptic curves are presented. Finally, the results of the implementations of the algorithms are given.
(11104 views)
Book cover: Geometry of Numbers with Applications to Number TheoryGeometry of Numbers with Applications to Number Theory
by - University of Georgia
The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.
(5352 views)