**Modular Forms, Hecke Operators, and Modular Abelian Varieties**

by Kenneth A. Ribet, William A. Stein

**Publisher**: University of Washington 2003**Number of pages**: 154

**Description**:

Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences; Abelian Varieties; Abelian Varieties Attached to Modular Forms; L-functions; The Birch and Swinnerton-Dyer Conjecture.

Download or read it online for free here:

**Download link**

(880KB, PDF)

## Similar books

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**12626**views)

**Elliptic Curves over Function Fields**

by

**Douglas Ulmer**-

**arXiv**

The focus is on elliptic curves over function fields over finite fields. We explain the main classical results on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.

(

**7227**views)

**Algorithms for Modular Elliptic Curves**

by

**J. E. Cremona**-

**Cambridge University Press**

The author describes the construction of modular elliptic curves giving an algorithm for their computation. Then algorithms for the arithmetic of elliptic curves are presented. Finally, the results of the implementations of the algorithms are given.

(

**11104**views)

**Geometry of Numbers with Applications to Number Theory**

by

**Pete L. Clark**-

**University of Georgia**

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.

(

**5352**views)