Logo

Modular Forms, Hecke Operators, and Modular Abelian Varieties

Small book cover: Modular Forms, Hecke Operators, and Modular Abelian Varieties

Modular Forms, Hecke Operators, and Modular Abelian Varieties
by

Publisher: University of Washington
Number of pages: 154

Description:
Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences; Abelian Varieties; Abelian Varieties Attached to Modular Forms; L-functions; The Birch and Swinnerton-Dyer Conjecture.

Home page url

Download or read it online for free here:
Download link
(880KB, PDF)

Similar books

Book cover: Predicative ArithmeticPredicative Arithmetic
by - Princeton Univ Pr
The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.
(11981 views)
Book cover: Topics in the Theory of Quadratic ResiduesTopics in the Theory of Quadratic Residues
by - arXiv
Beginning with Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study ...
(2983 views)
Book cover: Langlands Correspondence for Loop GroupsLanglands Correspondence for Loop Groups
by - Cambridge University Press
This book provides a review of an important aspect of the geometric Langlands program - the role of representation theory of affine Kac-Moody algebras. It provides introductions to such notions as vertex algebras, the Langlands dual group, etc.
(4831 views)
Book cover: Geometric Theorems and Arithmetic FunctionsGeometric Theorems and Arithmetic Functions
by - American Research Press
Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.
(11851 views)