**Finite Group Representations for the Pure Mathematician**

by Peter Webb

**Publisher**: University of Minnesota 2007**Number of pages**: 183

**Description**:

The book is intended to be used as a learning tool by people who do not know the subject, rather than as an encyclopaedic reference. The book's title is intended to indicate both breadth and limitations: it will probably not be very useful to most physicists or chemists, but it is intended to be appropriate for non-specialists in the area of representation theory, such as those whose primary interest is topology, combinatorics or number theory.

Download or read it online for free here:

**Download link**

(DVI/PS/PDF)

## Similar books

**Introduction to Representation Theory**

by

**Pavel Etingof, at al.**-

**MIT**

Representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics and quantum field theory.

(

**10540**views)

**Representations of Reductive p-adic Groups**

by

**Fiona Murnaghan**-

**University of Toronto**

Contents: Valuations and local fields; Smooth representations of locally compact totally disconnected groups; Haar measure, convolution, and characters of admissible representations; Induced representations - general properties; etc.

(

**5967**views)

**Varieties of Lattices**

by

**Peter Jipsen, Henry Rose**-

**Springer**

Presents the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The text includes preliminaries that make the material accessible to anyone with basic knowledge of universal algebra.

(

**8900**views)

**Representation Theory of Compact Groups**

by

**Michael Ruzhansky, Ville Turunen**-

**Aalto TKK**

Contents: Groups (Groups without topology, Group actions and representations); Topological groups (Compact groups, Haar measure, Fourier transforms on compact groups..); Linear Lie groups (Exponential map, Lie groups and Lie algebras); Hopf algebras.

(

**7618**views)