Logo

Finite Group Representations for the Pure Mathematician

Small book cover: Finite Group Representations for the Pure Mathematician

Finite Group Representations for the Pure Mathematician
by

Publisher: University of Minnesota
Number of pages: 183

Description:
The book is intended to be used as a learning tool by people who do not know the subject, rather than as an encyclopaedic reference. The book's title is intended to indicate both breadth and limitations: it will probably not be very useful to most physicists or chemists, but it is intended to be appropriate for non-specialists in the area of representation theory, such as those whose primary interest is topology, combinatorics or number theory.

Home page url

Download or read it online for free here:
Download link
(DVI/PS/PDF)

Similar books

Book cover: Introduction to Representation TheoryIntroduction to Representation Theory
by - MIT
Representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics and quantum field theory.
(10540 views)
Book cover: Representations of Reductive p-adic GroupsRepresentations of Reductive p-adic Groups
by - University of Toronto
Contents: Valuations and local fields; Smooth representations of locally compact totally disconnected groups; Haar measure, convolution, and characters of admissible representations; Induced representations - general properties; etc.
(5967 views)
Book cover: Varieties of LatticesVarieties of Lattices
by - Springer
Presents the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The text includes preliminaries that make the material accessible to anyone with basic knowledge of universal algebra.
(8900 views)
Book cover: Representation Theory of Compact GroupsRepresentation Theory of Compact Groups
by - Aalto TKK
Contents: Groups (Groups without topology, Group actions and representations); Topological groups (Compact groups, Haar measure, Fourier transforms on compact groups..); Linear Lie groups (Exponential map, Lie groups and Lie algebras); Hopf algebras.
(7618 views)