**Comments and topics on Smarandache notions and problems**

by Kenichiro Kashihara

**Publisher**: Erhus University Press 1996**ISBN/ASIN**: 1879585553**ISBN-13**: 9781879585553**Number of pages**: 50

**Description**:

This book starts with an examination of some of the problems posed by Florentin Smarandache, one of the foremost mathematicians in the world today. The problems are from many different areas, such as sequences, primes and other aspects of number theory. Some of the problems are solved in the book, although in many cases the author raises additional questions. The second part of the book deals with a function created by the author and given the name the Pseudo Smarandache function.

Download or read it online for free here:

**Download link**

(1.4MB, PDF)

## Similar books

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**15463**views)

**An Introduction to the Smarandache Function**

by

**Charles Ashbacher**-

**Erhus Univ Pr**

In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.

(

**10331**views)

**Pluckings from the tree of Smarandache: Sequences and functions**

by

**Charles Ashbacher**-

**American Research Press**

The third book in a series exploring the set of problems called Smarandache Notions. This work delves more deeply into the mathematics of the problems, the level of difficulty here will be somewhat higher than that of the previous books.

(

**15183**views)

**Elliptic Curves over Function Fields**

by

**Douglas Ulmer**-

**arXiv**

The focus is on elliptic curves over function fields over finite fields. We explain the main classical results on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.

(

**9462**views)