**Ricci Flow and the Poincare Conjecture**

by John Morgan, Gang Tian

**Publisher**: American Mathematical Society 2007**ISBN/ASIN**: 0821843281**ISBN-13**: 9780821843284**Number of pages**: 493

**Description**:

This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's three preprints. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

Download or read it online for free here:

**Download link**

(4.2MB, PDF)

## Similar books

**Exterior Differential Systems and Euler-Lagrange Partial Differential Equations**

by

**R. Bryant, P. Griffiths, D. Grossman**-

**University Of Chicago Press**

The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.

(

**12495**views)

**Algebraic geometry and projective differential geometry**

by

**Joseph M. Landsberg**-

**arXiv**

Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.

(

**11192**views)

**An Introduction to Gaussian Geometry**

by

**Sigmundur Gudmundsson**-

**Lund University**

These notes introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra and real analysis.

(

**7522**views)

**Triangles, Rotation, a Theorem and the Jackpot**

by

**Dave Auckly**-

**arXiv**

This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.

(

**5222**views)