Logo

Analytic Number Theory: A Tribute to Gauss and Dirichlet

Large book cover: Analytic Number Theory: A Tribute to Gauss and Dirichlet

Analytic Number Theory: A Tribute to Gauss and Dirichlet
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821843079
ISBN-13: 9780821843079
Number of pages: 266

Description:
The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet.

Home page url

Download or read it online for free here:
Download link
(2.6MB, PDF)

Similar books

Book cover: Lectures on Sieve MethodsLectures on Sieve Methods
by - Tata Institute of Fundamental Research
The aim of this text is to provide an introduction to modern sieve methods, i.e. to various forms of both the large sieve (part I of the book) and the small sieve (part II), as well as their interconnections and applications.
(5530 views)
Book cover: Introduction to Analytic Number TheoryIntroduction to Analytic Number Theory
by - University of Illinois
Contents: Primes and the Fundamental Theorem of Arithmetic; Arithmetic functions (Elementary theory, Asymptotic estimates, Dirichlet series and Euler products); Distribution of primes; Primes in arithmetic progressions - Dirichlet's Theorem.
(7562 views)
Book cover: Lectures on The Riemann Zeta-FunctionLectures on The Riemann Zeta-Function
by - Tata Institute of Fundamental Research
These notes provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here.
(8068 views)
Book cover: Lectures on a Method in the Theory of Exponential SumsLectures on a Method in the Theory of Exponential Sums
by - Tata Institute of Fundamental Research
The author presents a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous.
(5074 views)