Logo

Introduction to the Field Theory of Classical and Quantum Phase Transitions

Small book cover: Introduction to the Field Theory of Classical and Quantum Phase Transitions

Introduction to the Field Theory of Classical and Quantum Phase Transitions
by

Publisher: arXiv
Number of pages: 178

Description:
These lecture notes provide a relatively self-contained introduction to field theoretic methods employed in the study of classical and quantum phase transitions. Classical phase transitions occur at a regime where quantum fluctuations do not play an important role, usually at high enough temperatures.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Statistical Mechanics of Nonequilibrium LiquidsStatistical Mechanics of Nonequilibrium Liquids
by - ANU E Press
The book charts the development and theoretical analysis of molecular dynamics as applied to equilibrium and non-equilibrium systems. It connects molecular dynamics simulation with the mathematical theory to understand non-equilibrium steady states.
(10519 views)
Book cover: Modern Statistical MechanicsModern Statistical Mechanics
by - The University of Virginia
This book is an attempt to cover the gap between what is taught in a conventional statistical mechanics class and between what is necessary to understand current research. The aim is to introduce the basics of many-body physics to a wide audience.
(6193 views)
Book cover: Statistical Physics IStatistical Physics I
by - University of Guelph
From the table of contents: Thermodynamic systems and the zeroth law; Transformations and the first law; Heat engines and the second law; Entropy and the third law; Thermodynamic potentials; Thermodynamics of magnetic systems.
(9697 views)
Book cover: Exactly Solved Models in Statistical MechanicsExactly Solved Models in Statistical Mechanics
by - Academic Press
This text explores the solution of two-dimensional lattice models. Topics include basic statistical mechanics, Ising models, mean field model, spherical model, ice-type models, corner transfer matrices, hard hexagonal models, and elliptic functions.
(10413 views)