An Introduction to Mathematical Logic
by Wolfram Pohlers, Thomas Glass
1992
Number of pages: 229
Description:
This text treats pure logic and in this connection introduces to basic proof-theoretic techniques. In the second part fundamentals of model theory and in the third part those of recursion theory are dealt with. Furthermore, some extensions of first order logic are treated. Finally, axiom systems for number theory are introduced and Godel's theorems are proved.
This document is no more available for free.
Similar books

by Nuel Belnap - University of Pittsburgh
Contents: Grammar; The art of the logic of truth-functional connectives; Quantifier proofs; A modicum of set theory; Symbolizing English quantifiers; Quantifier semantics - interpretation and counterexample; Theories; Definitions.
(9630 views)

by Johan van Benthem - CSLI
An examination of the role of partial information - with illustrations drawn from different branches of Intensional Logic - and various influences stemming from current theories of the semantics of natural language, involving generalized quantifiers.
(8317 views)

- Wikibooks
This book provides a survey of mathematical logic and its various applications. After covering basic material of propositional logic and first-order logic, the course presents the foundations of finite model theory and descriptive complexity.
(7178 views)

by Arnold W. Miller - arXiv
This is a set of questions written for a course in Mathematical Logic. Topics covered are: propositional logic; axioms of ZFC; wellorderings and equivalents of AC; ordinal and cardinal arithmetic; first order logic, and the compactness theorem; etc.
(10929 views)