Logo

Introduction to the Numerical Integration of PDEs

Small book cover: Introduction to the Numerical Integration of PDEs

Introduction to the Numerical Integration of PDEs
by

Publisher: University of Durham
Number of pages: 89

Description:
In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.

Home page url

Download or read it online for free here:
Download link
(530KB, PS)

Similar books

Book cover: Lectures on Numerical Methods in Bifurcation ProblemsLectures on Numerical Methods in Bifurcation Problems
by - Tata Institute Of Fundamental Research
These lectures introduce the modern theory and practical numerical methods for continuation of solutions of nonlinear problems depending upon parameters. The treatment is elementary, advanced calculus and linear algebra are the omly prerequisites.
(8615 views)
Book cover: Geometric Transformation of Finite Element Methods: Theory and ApplicationsGeometric Transformation of Finite Element Methods: Theory and Applications
by - arXiv.org
We present a new technique to apply finite element methods to partial differential equations over curved domains. Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove finite element convergence rates for the problem.
(5036 views)
Book cover: Solving PDEs in PythonSolving PDEs in Python
by - Springer
This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, it guides readers through the essential steps to quickly solving a PDE in FEniCS.
(6017 views)
Book cover: Numerical Solutions of Engineering ProblemsNumerical Solutions of Engineering Problems
by - University of Alberta
Contents: On mathematical models; Single nonlinear algebraic equation; System of linear and nonlinear algebraic equations; Numerical differentiation and integration; Ordinary differential equations; Boundary value problems; etc.
(14709 views)