Logo

Quantum Theory of Large Systems of Non-Relativistic Matter

Small book cover: Quantum Theory of Large Systems of Non-Relativistic Matter

Quantum Theory of Large Systems of Non-Relativistic Matter
by

Publisher: arXiv
Number of pages: 145

Description:
Contents: The Pauli Equation and its Symmetries; Gauge Invariance in Non-Relativistic Quantum Many-Particle Systems; Some Key Effects Related to the U(1)xSU(2) Gauge Invariance of Non-Relativistic Quantum Mechanics; Scaling Limit of the Effective Action of Fermi Systems, and Classification of States of Non-Relativistic Matter; Scaling Limit of the Effective Action of a Two -Dimensional, Incompressible Quantum Fluid; etc.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Quantum Theory of Condensed MatterQuantum Theory of Condensed Matter
by - Oxford University
I aim to discuss a reasonably wide range of quantum-mechanical phenomena from condensed matter physics, with an emphasis mainly on physical ideas. The most important prerequisite is some understanding of second quantization for fermions and bosons.
(8424 views)
Book cover: Lecture Notes on Condensed Matter PhysicsLecture Notes on Condensed Matter Physics
by - University of California, San Diego
These lecture notes are intended to supplement a graduate level course in condensed matter physics. From the table of contents: Introductory Information; Boltzmann Transport; Mesoscopia; Linear Response Theory; Magnetism.
(9598 views)
Book cover: Physics of Soft MatterPhysics of Soft Matter
by - University of Ljubljana
These notes were prepared for the one-semester course in theoretical physics of soft condensed matter physics for master students. The aim of the course is to provide a broad review the phenomena and the concepts characteristic of soft matter.
(4538 views)
Book cover: Percolation TheoryPercolation Theory
by - MIT
Percolation theory is the simplest model displaying a phase transition. The aim of the percolation theory course is to provide a challenging and stimulating introduction to a selection of topics within modern theoretical condensed matter physics.
(10627 views)