Logo

Introductory Finite Difference Methods for PDEs

Small book cover: Introductory Finite Difference Methods for PDEs

Introductory Finite Difference Methods for PDEs
by

Publisher: BookBoon
ISBN-13: 9788776816421
Number of pages: 144

Description:
This book presents finite difference methods for solving partial differential equations (PDEs) and also general concepts like stability, boundary conditions etc. The book is intended for undergraduates who know Calculus and introductory programming.

Home page url

Download or read it online for free here:
Download link
(4.2MB, PDF)

Similar books

Book cover: Introduction to Partial Differential EquationsIntroduction to Partial Differential Equations
by - University of Oulu
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation; Laplace Operator; Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
(11592 views)
Book cover: Partial Differential Equations: An IntroductionPartial Differential Equations: An Introduction
by - arXiv
This book encompasses both traditional and modern methods treating partial differential equation (PDE) of first order and second order. There is a balance in making a selfcontained mathematical text and introducing new subjects.
(12663 views)
Book cover: Partial Differential Equations for FinancePartial Differential Equations for Finance
by - New York University
An introduction to those aspects of partial differential equations and optimal control most relevant to finance: PDE’s naturally associated to diffusion processes, Kolmogorov equations and their applications, linear parabolic equations, etc.
(20369 views)
Book cover: Exterior Differential Systems and Euler-Lagrange Partial Differential EquationsExterior Differential Systems and Euler-Lagrange Partial Differential Equations
by - University Of Chicago Press
The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.
(15213 views)