Logo

Introductory Finite Difference Methods for PDEs

Small book cover: Introductory Finite Difference Methods for PDEs

Introductory Finite Difference Methods for PDEs
by

Publisher: BookBoon
ISBN-13: 9788776816421
Number of pages: 144

Description:
This book presents finite difference methods for solving partial differential equations (PDEs) and also general concepts like stability, boundary conditions etc. The book is intended for undergraduates who know Calculus and introductory programming.

Home page url

Download or read it online for free here:
Download link
(4.2MB, PDF)

Similar books

Book cover: Lectures on Partial Differential EquationsLectures on Partial Differential Equations
by - Tata Institute of Fundamental Research
The purpose of this course was to introduce students to the applications of Fourier analysis -- by which I mean the study of convolution operators as well as the Fourier transform itself -- to partial differential equations.
(4525 views)
Book cover: Partial Differential Equations of Mathematical PhysicsPartial Differential Equations of Mathematical Physics
by - Rice University
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.
(9559 views)
Book cover: Mathematical Theory of Scattering ResonancesMathematical Theory of Scattering Resonances
by - MIT
Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; etc.
(4886 views)
Book cover: Introduction to Partial Differential EquationsIntroduction to Partial Differential Equations
by - UCSB
The author develops the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from physics. He presents some of the mathematics that can be used to describe the vibrating circular membrane.
(8243 views)