**Bosonization of Interacting Fermions in Arbitrary Dimensions**

by Peter Kopietz

**Publisher**: arXiv 2006**ISBN/ASIN**: 3540627200**Number of pages**: 287

**Description**:

In this book we describe a new non-perturbative approach to the fermionic many-body problem, which can be considered as a generalization to arbitrary dimensions of the well-known bosonization technique for one-dimensional fermions. Our approach is based on the direct calculation of correlation functions of interacting Fermi systems with dominant forward scattering via functional integration and Hubbard-Stratonovich transformations.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Statistical Mechanics Notes**

by

**Jed Rembold**-

**New Mexico Tech**

From the table of contents: Fundamental Principles of Statistical Physics; Selected Applications (Classical Systems, Ideal Fermi Gas, Ideal Bose Gas, Black Body Radiation, Relativistic Degenerate Electron Gas); Introduction to Kinetic Theory.

(

**9895**views)

**Statistical Mechanics**

by

**Daniel F. Styer**-

**Oberlin College**

This is a book about statistical mechanics at the advanced undergraduate level. It assumes a background in classical mechanics through the concept of phase space, in quantum mechanics through the Pauli exclusion principle, and multivariate calculus.

(

**12093**views)

**Statistical Mechanics of Lattice Systems**

by

**Sacha Friedli, Yvan Velenik**-

**Cambridge University Press**

This motivating textbook gives a friendly, rigorous introduction to fundamental concepts in equilibrium statistical mechanics, covering a selection of specific models, including the Curie-Weiss and Ising models, the Gaussian free field, O(n) models.

(

**3795**views)

**The basic paradoxes of statistical classical physics and quantum mechanics**

by

**Oleg Kupervasser**-

**arXiv**

Statistical classical mechanics and quantum mechanics are two developed theories that contain a number of paradoxes. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws.

(

**14464**views)