Four-manifolds, Geometries and Knots

Small book cover: Four-manifolds, Geometries and Knots

Four-manifolds, Geometries and Knots

Publisher: arXiv
Number of pages: 396

The goal of this book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such manifolds and knots. The first chapter is purely algebraic. The rest of the book may be divided into three parts: general results on homotopy and surgery, geometries and geometric decompositions, and 2-knots.

Home page url

Download or read it online for free here:
Download link
(2.7MB, PDF)

Similar books

Book cover: Unsolved Problems in Virtual Knot Theory and Combinatorial Knot TheoryUnsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory
by - arXiv
The purpose of this paper is to give an introduction to virtual knot theory and to record a collection of research problems that the authors have found fascinating. The paper introduces the theory and discusses some problems in that context.
Book cover: Surgery on Compact ManifoldsSurgery on Compact Manifolds
by - American Mathematical Society
This book represents an attempt to collect and systematize the methods and main applications of the method of surgery, insofar as compact (but not necessarily connected, simply connected or closed) manifolds are involved.
Book cover: Knot Invariants and Higher Representation TheoryKnot Invariants and Higher Representation Theory
by - arXiv
We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel...
Book cover: Diffeomorphisms of Elliptic 3-ManifoldsDiffeomorphisms of Elliptic 3-Manifolds
by - arXiv
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.