**Notes on Basic 3-Manifold Topology**

by Allen Hatcher

2000**Number of pages**: 61

**Description**:

The little that exists of the 3-manifolds book (see below for a table of contents) is rather crude and unpolished, and doesn't cover a lot of material, but it does contain a few things that aren't readily available elsewhere, like the elementary form of the Jaco-Shalen/Johannson torus decomposition theorem.

Download or read it online for free here:

**Download link**

(0.4MB, PDF)

## Similar books

**Algebraic L-theory and Topological Manifolds**

by

**A. A. Ranicki**-

**Cambridge University Press**

Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds.

(

**4773**views)

**Surgery on Compact Manifolds**

by

**C.T.C. Wall, A. A. Ranicki**-

**American Mathematical Society**

This book represents an attempt to collect and systematize the methods and main applications of the method of surgery, insofar as compact (but not necessarily connected, simply connected or closed) manifolds are involved.

(

**5259**views)

**The Geometry and Topology of Three-Manifolds**

by

**William P Thurston**-

**Mathematical Sciences Research Institute**

The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.

(

**12422**views)

**CDBooK: Introduction to Vassiliev Knot invariants**

by

**S.Chmutov, S.Duzhin, J.Mostovoy**-

**Ohio State Universit**

An introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. Written for readers with no background in this area, and we care more about the basic notions than about more advanced material.

(

**6567**views)