Logo

Introduction to Probability Theory and Statistics for Linguistics

Small book cover: Introduction to Probability Theory and Statistics for Linguistics

Introduction to Probability Theory and Statistics for Linguistics
by

Publisher: UCLA
Number of pages: 137

Description:
Contents: Basic Probability Theory (Probability Spaces, Conditional Probability, Random Variables, Expected Word Length, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics (Probabilistic Regular Languages and Hidden Markov Models).

Download or read it online for free here:
Download link
(440KB, PDF)

Similar books

Book cover: Probability and Statistics: A Course for Physicists and EngineersProbability and Statistics: A Course for Physicists and Engineers
by - De Gruyter Open
This is an introduction to concepts of probability theory, probability distributions relevant in the applied sciences, as well as basics of sampling distributions, estimation and hypothesis testing. Designed for students in engineering and physics.
(864 views)
Book cover: Inverse Problem Theory and Methods for Model Parameter EstimationInverse Problem Theory and Methods for Model Parameter Estimation
by - SIAM
The first part deals with discrete inverse problems with a finite number of parameters, while the second part deals with general inverse problems. The book for scientists and applied mathematicians facing the interpretation of experimental data.
(11694 views)
Book cover: Probability and Mathematical StatisticsProbability and Mathematical Statistics
by - University of Louisville
This book is an introduction to probability and mathematical statistics intended for students already having some elementary mathematical background. It is intended for a one-year junior or senior level undergraduate or beginning graduate course.
(4259 views)
Book cover: An Introduction to Stochastic PDEsAn Introduction to Stochastic PDEs
by - arXiv
This text is an attempt to give a reasonably self-contained presentation of the basic theory of stochastic partial differential equations, taking for granted basic measure theory, functional analysis and probability theory, but nothing else.
(9346 views)