Logo

Lectures on Differential Geometry

Small book cover: Lectures on Differential Geometry

Lectures on Differential Geometry
by

Publisher: University of California
Number of pages: 263

Description:
This course will describe the foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms, de Rham cohomology and Morse homology.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Semi-Riemann Geometry and General RelativitySemi-Riemann Geometry and General Relativity
by
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(12755 views)
Book cover: Riemannian Submanifolds: A SurveyRiemannian Submanifolds: A Survey
by - arXiv
Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.
(3065 views)
Book cover: Lectures on Geodesics in Riemannian GeometryLectures on Geodesics in Riemannian Geometry
by - Tata Institute of Fundamental Research
The main topic of these notes is geodesics. Our aim is to give a fairly complete treatment of the foundations of Riemannian geometry and to give global results for Riemannian manifolds which are subject to geometric conditions of various types.
(4821 views)
Book cover: Holonomy Groups in Riemannian GeometryHolonomy Groups in Riemannian Geometry
by - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(4222 views)