**Lectures on Differential Geometry**

by John Douglas Moore

**Publisher**: University of California 2009**Number of pages**: 263

**Description**:

This course will describe the foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms, de Rham cohomology and Morse homology.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**A Panoramic View of Riemannian Geometry**

by

**Marcel Berger**-

**Springer**

In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.

(

**6644**views)

**A Sampler of Riemann-Finsler Geometry**

by

**D. Bao, R. Bryant, S. Chern, Z. Shen**-

**Cambridge University Press**

Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles.

(

**8595**views)

**Lectures notes on compact Riemann surfaces**

by

**Bertrand Eynard**-

**arXiv.org**

An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.

(

**401**views)

**An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity**

by

**Leonor Godinho, Jose Natario**

Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).

(

**3676**views)