**Algebraic Topology**

by Allen Hatcher

**Publisher**: Cambridge University Press 2001**ISBN/ASIN**: 0521795400**ISBN-13**: 9780521795401**Number of pages**: 559

**Description**:

In most major universities one of the three or four basic first-year graduate mathematics courses is algebraic topology. This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.

Download or read it online for free here:

**Download link**

(3.5MB, PDF)

## Similar books

**Manifold Theory**

by

**Peter Petersen**-

**UCLA**

These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.

(

**4619**views)

**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by

**J. P. May**-

**Springer**

The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

(

**6981**views)

**Geometry of 2D Topological Field Theories**

by

**Boris Dubrovin**-

**arXiv**

These lecture notes are devoted to the theory of equations of associativity describing geometry of moduli spaces of 2D topological field theories. Topics: WDVV equations and Frobenius manifolds; Polynomial solutions of WDVV; Symmetries of WDVV; etc.

(

**7060**views)

**Differential Forms and Cohomology: Course**

by

**Peter Saveliev**-

**Intelligent Perception**

Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.

(

**2792**views)