Classical Field Theory by Gleb Arutyunov

Small book cover: Classical Field Theory

Classical Field Theory

Publisher: Utrecht University
Number of pages: 158

The aim of the course is to introduce the basic methods of classical field theory and to apply them in a variety of physical models ranging from classical electrodynamics to macroscopic theory of ferromagnetism. In particular, the course will cover the Lorentz-covariant formulation of Maxwell's electromagnetic theory, advanced radiation problems, the Ginzburg-Landau theory of superconductivity, hydrodynamics of ideal liquids, the Navier-Stokes equation and elements of soliton theory.

Download or read it online for free here:
Download link
(7.5MB, PDF)

Similar books

Book cover: Geometry of 2D Topological Field TheoriesGeometry of 2D Topological Field Theories
by - arXiv
These lecture notes are devoted to the theory of equations of associativity describing geometry of moduli spaces of 2D topological field theories. Topics: WDVV equations and Frobenius manifolds; Polynomial solutions of WDVV; Symmetries of WDVV; etc.
Book cover: Combinatorial Geometry with Application to Field TheoryCombinatorial Geometry with Application to Field Theory
by - InfoQuest
Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.
Book cover: Introduction to Symplectic Field TheoryIntroduction to Symplectic Field Theory
by - arXiv
We sketch in this article a new theory, which we call Symplectic Field Theory or SFT, which provides an approach to Gromov-Witten invariants of symplectic manifolds and their Lagrangian submanifolds in the spirit of topological field theory.
Book cover: Quantum ElectrodynamicsQuantum Electrodynamics
by - Stockholms universitet, Fysikum
Lecture notes for a graduate course in quantum electrodynamics. Contents: What is a field theory; Quantum theory of the free scalar field; Spacetime properties; The Unruh effect; The Dirac field; Quantum theory of the Dirac field; and more.