**Introduction to Differential Topology**

by Uwe Kaiser

**Publisher**: Boise State University 2006**Number of pages**: 110

**Description**:

This is a preliminary version of introductory lecture notes for Differential Topology. We try to give a deeper account of basic ideas of differential topology than usual in introductory texts. Also many more examples of manifolds like matrix groups and Grassmannians are worked out in detail.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Lecture Notes on Differentiable Manifolds**

by

**Jie Wu**-

**National University of Singapore**

Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.

(

**7887**views)

**Differential Topology and Morse Theory**

by

**Dirk Schuetz**-

**University of Sheffield**

These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

(

**6405**views)

**Lectures on Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Springer**

An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. The text is written in a clear, easy-to-follow style.

(

**10543**views)

**Contact Geometry**

by

**Hansjoerg Geiges**-

**arXiv**

This is an introductory text on the more topological aspects of contact geometry. After discussing some of the fundamental results of contact topology, I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.

(

**7053**views)