Introduction to Differential Topology
by Uwe Kaiser
Publisher: Boise State University 2006
Number of pages: 110
Description:
This is a preliminary version of introductory lecture notes for Differential Topology. We try to give a deeper account of basic ideas of differential topology than usual in introductory texts. Also many more examples of manifolds like matrix groups and Grassmannians are worked out in detail.
Download or read it online for free here:
Download link
(multiple formats)
Similar books
Ricci Flow and the Poincare Conjecture
by John Morgan, Gang Tian - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(14180 views)
by John Morgan, Gang Tian - American Mathematical Society
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.
(14180 views)
Differential Topology
by Bjorn Ian Dundas - Johns Hopkins University
This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.
(11695 views)
by Bjorn Ian Dundas - Johns Hopkins University
This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.
(11695 views)
Lecture Notes on Differentiable Manifolds
by Jie Wu - National University of Singapore
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.
(12997 views)
by Jie Wu - National University of Singapore
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.
(12997 views)
Lectures on Differential Topology
by Riccardo Benedetti - arXiv.org
This text is a comprehensive introduction to the theory of smooth manifolds, maps, and fundamental associated structures. It is geared toward beginning master's and doctoral students with an undergraduate mathematics background.
(338 views)
by Riccardo Benedetti - arXiv.org
This text is a comprehensive introduction to the theory of smooth manifolds, maps, and fundamental associated structures. It is geared toward beginning master's and doctoral students with an undergraduate mathematics background.
(338 views)