**Introduction to Differential Topology**

by Uwe Kaiser

**Publisher**: Boise State University 2006**Number of pages**: 110

**Description**:

This is a preliminary version of introductory lecture notes for Differential Topology. We try to give a deeper account of basic ideas of differential topology than usual in introductory texts. Also many more examples of manifolds like matrix groups and Grassmannians are worked out in detail.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Differentiable Manifolds**

by

**Nigel Hitchin**

The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.

(

**15338**views)

**Manifolds of Differentiable Mappings**

by

**Peter W. Michor**-

**Birkhauser**

This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.

(

**7687**views)

**Differential Topology**

by

**Bjorn Ian Dundas**-

**Johns Hopkins University**

This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.

(

**8264**views)

**Introduction to Symplectic and Hamiltonian Geometry**

by

**Ana Cannas da Silva**

The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.

(

**11394**views)