Logo

Differential Topology and Morse Theory

Small book cover: Differential Topology and Morse Theory

Differential Topology and Morse Theory
by

Publisher: University of Sheffield
Number of pages: 96

Description:
These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

Home page url

Download or read it online for free here:
Download link
(600KB, PDF)

Similar books

Book cover: Introduction to Symplectic and Hamiltonian GeometryIntroduction to Symplectic and Hamiltonian Geometry
by
The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.
(8819 views)
Book cover: Manifolds of Differentiable MappingsManifolds of Differentiable Mappings
by - Birkhauser
This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.
(5319 views)
Book cover: Introduction to Differential Topology, de Rham Theory and Morse TheoryIntroduction to Differential Topology, de Rham Theory and Morse Theory
by - Radboud University
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.
(6114 views)
Book cover: Introduction to Differential TopologyIntroduction to Differential Topology
by - Boise State University
This is a preliminary version of introductory lecture notes for Differential Topology. We try to give a deeper account of basic ideas of differential topology than usual in introductory texts. Many examples of manifolds are worked out in detail.
(5378 views)