**Differential Topology and Morse Theory**

by Dirk Schuetz

**Publisher**: University of Sheffield 2009**Number of pages**: 96

**Description**:

These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

Download or read it online for free here:

**Download link**

(600KB, PDF)

## Similar books

**Introduction to Symplectic and Hamiltonian Geometry**

by

**Ana Cannas da Silva**

The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.

(

**8819**views)

**Manifolds of Differentiable Mappings**

by

**Peter W. Michor**-

**Birkhauser**

This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.

(

**5319**views)

**Introduction to Differential Topology, de Rham Theory and Morse Theory**

by

**Michael Muger**-

**Radboud University**

Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.

(

**6114**views)

**Introduction to Differential Topology**

by

**Uwe Kaiser**-

**Boise State University**

This is a preliminary version of introductory lecture notes for Differential Topology. We try to give a deeper account of basic ideas of differential topology than usual in introductory texts. Many examples of manifolds are worked out in detail.

(

**5378**views)