A Probability Course for the Actuaries
by Marcel B. Finan
Publisher: Arkansas Tech University 2011
Number of pages: 517
Description:
The present manuscript is designed mainly to help students prepare for the Probability Exam (Exam P/1), the first actuarial examination administered by the Society of Actuaries. This examination tests a student's knowledge of the fundamental probability tools for quantitatively assessing risk. A thorough command of calculus is assumed.
Download or read it online for free here:
Download link
(2.3MB, PDF)
Similar books
Random Walks and Electric Networks
by Peter G. Doyle, J. Laurie Snell - Dartmouth College
In this work we will look at the interplay of physics and mathematics in terms of an example where the mathematics involved is at the college level. The example is the relation between elementary electric network theory and random walks.
(8645 views)
by Peter G. Doyle, J. Laurie Snell - Dartmouth College
In this work we will look at the interplay of physics and mathematics in terms of an example where the mathematics involved is at the college level. The example is the relation between elementary electric network theory and random walks.
(8645 views)
Extracting Information from Random Data
by Pawel J. Szablowski - arXiv
We formulate conditions for convergence of Laws of Large Numbers and show its links with of parts mathematical analysis such as summation theory, convergence of orthogonal series. We present also various applications of Law of Large Numbers.
(6004 views)
by Pawel J. Szablowski - arXiv
We formulate conditions for convergence of Laws of Large Numbers and show its links with of parts mathematical analysis such as summation theory, convergence of orthogonal series. We present also various applications of Law of Large Numbers.
(6004 views)
Probability Theory
by Curtis T. McMullen - Harvard University
Contents: The Sample Space; Elements of Combinatorial Analysis; Random Walks; Combinations of Events; Conditional Probability; The Binomial and Poisson Distributions; Normal Approximation; Unlimited Sequences of Bernoulli Trials; etc.
(11463 views)
by Curtis T. McMullen - Harvard University
Contents: The Sample Space; Elements of Combinatorial Analysis; Random Walks; Combinations of Events; Conditional Probability; The Binomial and Poisson Distributions; Normal Approximation; Unlimited Sequences of Bernoulli Trials; etc.
(11463 views)
Introduction to Stochastic Analysis
by Michael Roeckner - Universitaet Bielefeld
From the table of contents: Introduction to Pathwise Ito-Calculus; (Semi-)Martingales and Stochastic Integration; Markov Processes and Semigroups - Application to Brownian Motion; Girsanov Transformation; Time Transformation.
(11118 views)
by Michael Roeckner - Universitaet Bielefeld
From the table of contents: Introduction to Pathwise Ito-Calculus; (Semi-)Martingales and Stochastic Integration; Markov Processes and Semigroups - Application to Brownian Motion; Girsanov Transformation; Time Transformation.
(11118 views)