Logo

An Introductory Single Variable Real Analysis

Small book cover: An Introductory Single Variable Real Analysis

An Introductory Single Variable Real Analysis
by

Publisher: Arkansas Tech University
Number of pages: 179

Description:
The present manuscript is designed for an introductory course in real analysis suitable to upper sophomore or junior level students who already had the calculus sequel as well as a course in discrete mathematics or an equivalent course in mathematical proof. The content is considered a moderate level of difficulty.

Home page url

Download or read it online for free here:
Download link
(620KB, PDF)

Similar books

Book cover: An Introductory Course Of Mathematical AnalysisAn Introductory Course Of Mathematical Analysis
by - Cambridge University Press
Originally published in 1926, this text was aimed at first-year undergraduates studying physics and chemistry, to help them become acquainted with the concepts and processes of differentiation and integration. A prominence is given to inequalities.
(3550 views)
Book cover: Introduction to Infinitesimal Analysis: Functions of One Real VariableIntroduction to Infinitesimal Analysis: Functions of One Real Variable
by - John Wiley & Sons
This volume is designed as a reference book for a course dealing with the fundamental theorems of infinitesimal calculus in a rigorous manner. The book may also be used as a basis for a rather short theoretical course on real functions.
(9950 views)
Book cover: Real Analysis for Graduate Students: Measure and Integration TheoryReal Analysis for Graduate Students: Measure and Integration Theory
by - CreateSpace
Nearly every Ph.D. student in mathematics needs to take a preliminary or qualifying examination in real analysis. This book provides the necessary tools to pass such an examination. The author presents the material in as clear a fashion as possible.
(10019 views)
Book cover: Fundamentals of AnalysisFundamentals of Analysis
by - Macquarie University
Set of notes suitable for an introduction to the basic ideas in analysis: the number system, sequences and limits, series, functions and continuity, differentiation, the Riemann integral, further treatment of limits, and uniform convergence.
(13617 views)