An Introductory Single Variable Real Analysis
by Marcel B. Finan
Publisher: Arkansas Tech University 2009
Number of pages: 179
Description:
The present manuscript is designed for an introductory course in real analysis suitable to upper sophomore or junior level students who already had the calculus sequel as well as a course in discrete mathematics or an equivalent course in mathematical proof. The content is considered a moderate level of difficulty.
Download or read it online for free here:
Download link
(620KB, PDF)
Similar books

by Pierre Schapira - Université Paris VI
The notes provide a short presentation of the main concepts of differential calculus. Our point of view is the abstract setting of a real normed space, and when necessary to specialize to the case of a finite dimensional space endowed with a basis.
(7585 views)

by Bruce K. Driver - Springer
These are lecture notes from Real analysis and PDE: Basic Topological, Metric and Banach Space Notions; Riemann Integral and ODE; Lebesbgue Integration; Hilbert Spaces and Spectral Theory of Compact Operators; Complex Variable Theory; etc.
(15053 views)

by B. Lafferriere, G. Lafferriere, N. Mau Nam - Portland State University Library
We provide students with a strong foundation in mathematical analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs.
(8085 views)

by Gerald Teschl - Universitaet Wien
This manuscript provides a brief introduction to Real and (linear and nonlinear) Functional Analysis. It covers basic Hilbert and Banach space theory as well as basic measure theory including Lebesgue spaces and the Fourier transform.
(13389 views)