Logo

Quantum Transients by A. del Campo, G. Garcia-Calderon, J. G. Muga

Small book cover: Quantum Transients

Quantum Transients
by

Publisher: arXiv
Number of pages: 76

Description:
Quantum transients are temporary features of matter waves before they reach a stationary regime. Transients may arise after the preparation of an unstable initial state or due to a sudden interaction or a change in the boundary conditions. Examples are diffraction in time, buildup processes, decay, trapping, forerunners or pulse formation, as well as other phenomena recently discovered, such as the simultaneous arrival of a wave peak at arbitrarily distant observers.

Home page url

Download or read it online for free here:
Download link
(1.7MB, PDF)

Similar books

Book cover: Decoherence: Basic Concepts and Their InterpretationDecoherence: Basic Concepts and Their Interpretation
by - arXiv
Introduction to the theory of decoherence. Contents: Phenomenon of decoherence: superpositions, superselection rules, decoherence by measurements; Observables as a derivable concept; Measurement problem; Density matrix, coarse graining, and events.
(12003 views)
Book cover: Lecture Notes on the Theory of Open Quantum SystemsLecture Notes on the Theory of Open Quantum Systems
by - arXiv.org
This is a self-contained set of lecture notes covering various aspects of the theory of open quantum system, at a level of a graduate course. The main emphasis is on completely positive maps and master equations, both Markovian and non-Markovian.
(4721 views)
Book cover: Consistent Quantum TheoryConsistent Quantum Theory
by - Cambridge University Press
This volume elucidates the consistent quantum theory approach to quantum mechanics at a level accessible to university students in physics, chemistry, mathematics, and computer science, making this an ideal supplement to standard textbooks.
(13574 views)
Book cover: The Physics of Quantum MechanicsThe Physics of Quantum Mechanics
by - Capella Archive
This book aims to give students the best possible understanding of the physical implications of quantum mechanics by explaining how quantum systems evolve in time, and showing the close parallels between quantum and classical dynamics.
(17359 views)