Notes on the course Algebraic Topology

Small book cover: Notes on the course Algebraic Topology

Notes on the course Algebraic Topology

Publisher: University of Oregon
Number of pages: 181

Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; Homotopy groups of CW-complexes; Homology groups: basic constructions; Homology groups of CW-complexes; Homology and homotopy groups; Homology with coefficients and cohomology groups; etc.

Home page url

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Polynomials and the Steenrod AlgebraPolynomials and the Steenrod Algebra
by - University of Manchester
This book investigates the Steenrod algebra A2 over the field of two elements F2 in a purely algebraic context by its action on the polynomial algebra P(n) in n variables over F2. The reader is expected to have a basic knowledge of algebra.
Book cover: Higher Topos TheoryHigher Topos Theory
by - Princeton University Press
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.
Book cover: An Introduction to Algebraic SurgeryAn Introduction to Algebraic Surgery
by - arXiv
Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory.
Book cover: Homotopy Theories and Model CategoriesHomotopy Theories and Model Categories
by - University of Notre Dame
This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.