Logo

Finite Group Schemes by Richard Pink

Small book cover: Finite Group Schemes

Finite Group Schemes
by

Publisher: ETH Zurich
Number of pages: 78

Description:
The aim of the lecture course is the classification of finite commutative group schemes over a perfect field of characteristic p, using the classical approach by contravariant Dieudonne theory. The theory is developed from scratch; emphasis is placed on complete proofs. No prerequisites other than a good knowledge of algebra and the basic properties of categories and schemes are required.

Home page url

Download or read it online for free here:
Download link
(550KB, PDF)

Similar books

Book cover: Lectures on Topics In The Theory of Infinite GroupsLectures on Topics In The Theory of Infinite Groups
by - Tata Institute of Fundamental Research
As the title suggests, the aim was not a systematic treatment of infinite groups. Instead the author tried to present some of the methods and results that are new and look promising, and that have not yet found their way into the books.
(6442 views)
Book cover: Symmetry Groups and Their ApplicationsSymmetry Groups and Their Applications
by - Academic Press
A beginning graduate level book on applied group theory. Only those aspects of group theory are treated which are useful in the physical sciences, but the mathematical apparatus underlying the applications is presented with a high degree of rigor.
(11053 views)
Book cover: Lie groups and Lie algebrasLie groups and Lie algebras
by - UC Berkeley
From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.
(8620 views)
Book cover: Introduction to Arithmetic GroupsIntroduction to Arithmetic Groups
by - arXiv
This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).
(7340 views)