**Finite Group Schemes**

by Richard Pink

**Publisher**: ETH Zurich 2005**Number of pages**: 78

**Description**:

The aim of the lecture course is the classification of finite commutative group schemes over a perfect field of characteristic p, using the classical approach by contravariant Dieudonne theory. The theory is developed from scratch; emphasis is placed on complete proofs. No prerequisites other than a good knowledge of algebra and the basic properties of categories and schemes are required.

Download or read it online for free here:

**Download link**

(550KB, PDF)

## Similar books

**Group Theory**

by

**J. S. Milne**

Contents: Basic Definitions and Results; Free Groups and Presentations; Coxeter Groups; Automorphisms and Extensions; Groups Acting on Sets; The Sylow Theorems; Subnormal Series; Solvable and Nilpotent Groups; Representations of Finite Groups.

(

**8800**views)

**Group Theory**

by

**Ferdi Aryasetiawan**-

**University of Lund**

The text deals with basic Group Theory and its applications. Contents: Abstract Group Theory; Theory of Group Representations; Group Theory in Quantum Mechanics; Lie Groups; Atomic Physics; The Group SU2: Isospin; The Point Groups; The Group SU3.

(

**10078**views)

**Group theory for Maths, Physics and Chemistry**

by

**Arjeh Cohen, Rosane Ushirobira, Jan Draisma**

Symmetry plays an important role in chemistry and physics. Group captures the symmetry in a very efficient manner. We focus on abstract group theory, deal with representations of groups, and deal with some applications in chemistry and physics.

(

**9685**views)

**Finite Rank Torsion Free Modules Over Dedekind Domains**

by

**E. Lee Lady**-

**University of Hawaii**

Contents: Modules Over Commutative Rings; Fundamentals; Rank-one Modules and Types; Quasi-Homomorphisms; The t-Socle and t-Radical; Butler Modules; Splitting Rings and Splitting Fields; Torsion Free Rings; Quotient Divisible Modules; etc.

(

**5429**views)