Logo

Basics of Bose-Einstein Condensation

Small book cover: Basics of Bose-Einstein Condensation

Basics of Bose-Einstein Condensation
by

Publisher: arXiv
Number of pages: 102

Description:
The review is devoted to the elucidation of the basic problems arising in the theoretical investigation of systems with Bose-Einstein condensate. Understanding these challenging problems is necessary for the correct description of Bose-condensed systems.

Home page url

Download or read it online for free here:
Download link
(690KB, PDF)

Similar books

Book cover: Introduction to Nonequilibrium Statistical Mechanics with Quantum FieldIntroduction to Nonequilibrium Statistical Mechanics with Quantum Field
by - arXiv
The author presents a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics.
(6040 views)
Book cover: Lecture Notes in Statistical Mechanics and MesoscopicsLecture Notes in Statistical Mechanics and Mesoscopics
by - arXiv
These are notes for quantum and statistical mechanics courses. Topics covered: master equations; non-equilibrium processes; fluctuation theorems; linear response theory; adiabatic transport; the Kubo formalism; scattering approach to mesoscopics.
(5090 views)
Book cover: Bosonization of Interacting Fermions in Arbitrary DimensionsBosonization of Interacting Fermions in Arbitrary Dimensions
by - arXiv
In this book we describe a new non-perturbative approach to the fermionic many-body problem, which can be considered as a generalization to arbitrary dimensions of the well-known bosonization technique for one-dimensional fermions.
(5268 views)
Book cover: Non-equilibrium Statistical MechanicsNon-equilibrium Statistical Mechanics
by - arXiv
We review some of the many recent activities on non-equilibrium statistical mechanics, focusing on general aspects. Using the language of stochastic Markov processes, we emphasize general properties of the evolution of configurational probabilities.
(5203 views)