**Introduction to Functional Analysis**

by Vladimir V. Kisil

**Publisher**: University of Leeds 2010**Number of pages**: 111

**Description**:

Contents: Motivating Example - Fourier Series; Basics of Linear Spaces; Orthogonality; Fourier Analysis; Duality of Linear Spaces; Operators; Spectral Theory; Compactness; The spectral theorem for compact normal operators; Applications to integral equations; Banach and Normed Spaces; Measure Theory; Integration; Functional Spaces; Fourier Transform.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Hilbert Space Methods for Partial Differential Equations**

by

**R. E. Showalter**-

**Pitman**

Written for beginning graduate students of mathematics, engineering, and the physical sciences. It covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, etc.

(

**12010**views)

**Spectral Theory**

by

**Leif Mejlbro**-

**BookBoon**

Spectral Theory - Functional Analysis Examples. Contents: Spectrum and resolvent; The adjoint of a bounded operator; Self adjoint operator; Isometric operators; Unitary and normal operators; Positive operators and projections; Compact operators.

(

**9178**views)

**Integral Operators**

by

**Leif Mejlbro**-

**BookBoon**

Examples of Hilbert-Smith operators and other types of integral operators, Hilbert Schmidt norm, Volterra integral operator, Cauchy-Schwarz inequality, Hoelder inequality, iterated kernels, Hermitian kernel, and much more.

(

**8364**views)

**Functional Analysis**

by

**Feng Tian, Palle E.T. Jorgensen**-

**arXiv**

Notes from a course which covered themes in functional analysis and operator theory, with an emphasis on topics of special relevance to such applications as representation theory, harmonic analysis, mathematical physics, and stochastic integration.

(

**8020**views)