Logo

Introduction to Functional Analysis

Small book cover: Introduction to Functional Analysis

Introduction to Functional Analysis
by

Publisher: University of Leeds
Number of pages: 111

Description:
Contents: Motivating Example - Fourier Series; Basics of Linear Spaces; Orthogonality; Fourier Analysis; Duality of Linear Spaces; Operators; Spectral Theory; Compactness; The spectral theorem for compact normal operators; Applications to integral equations; Banach and Normed Spaces; Measure Theory; Integration; Functional Spaces; Fourier Transform.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Global Analysis: Functional Analysis ExamplesGlobal Analysis: Functional Analysis Examples
by - BookBoon
From the table of contents: Metric spaces; Topology; Continuous mappings; Sequences; Semi-continuity; Connected sets, differentiation; Normed vector spaces and integral operators; Differentiable mappings; Complete metric spaces; and more.
(9184 views)
Book cover: Functional Analysis Lecture NotesFunctional Analysis Lecture Notes
by - University of East Anglia
Lecture notes for a 3rd year undergraduate course in functional analysis. By the end of the course, you should have a good understanding of normed vector spaces, Hilbert and Banach spaces, fixed point theorems and examples of function spaces.
(8203 views)
Book cover: Special Course in Functional Analysis: (Non-)Commutative TopologySpecial Course in Functional Analysis: (Non-)Commutative Topology
by - Aalto TKK
In this book you will learn something about functional analytic framework of topology. And you will get an access to more advanced literature on non-commutative geometry, a quite recent topic in mathematics and mathematical physics.
(7939 views)
Book cover: Distribution Theory (Generalized Functions)Distribution Theory (Generalized Functions)
by
From the table of contents: Introduction; The spaces S and S'; The spaces D and D'; The Fourier transform; Convolution; Fourier-Laplace Transform; Structure Theorem for Distributions; Partial Differential Equations; and more.
(7538 views)