Logo

Notes on Differential Geometry

Small book cover: Notes on Differential Geometry

Notes on Differential Geometry
by

Publisher: Victoria University of Wellington
Number of pages: 246

Description:
In this text the author presents an overview of differential geometry, also known as the theory of manifolds. Topics covered: Topological Manifolds and differentiable structure; Tangent and cotangent spaces; Fibre bundles; Geodesics and connexions; Riemann curvature; Exterior differential forms; Lie derivatives; etc.

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: Differential Geometry in PhysicsDifferential Geometry in Physics
by - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(12674 views)
Book cover: Introduction to Differential Geometry and General RelativityIntroduction to Differential Geometry and General Relativity
by
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(16389 views)
Book cover: Lectures on Differential GeometryLectures on Differential Geometry
by - University of Ottawa
This is a collection of lecture notes which the author put together while teaching courses on manifolds, tensor analysis, and differential geometry. He offers them to you in the hope that they may help you, and to complement the lectures.
(7048 views)
Book cover: Topics in Differential GeometryTopics in Differential Geometry
by - American Mathematical Society
Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.
(7026 views)