Algorithmic Information Theory
by Peter D. Gruenwald, Paul M.B. Vitanyi
Publisher: CWI 2007
Number of pages: 37
Description:
We introduce algorithmic information theory, also known as the theory of Kolmogorov complexity. We explain the main concepts of this quantitative approach to defining 'information'. We discuss the extent to which Kolmogorov's and Shannon's information theory have a common purpose, and where they are fundamentally different.
Download or read it online for free here:
Download link
(330KB, PDF)
Similar books

by Mark M. Wilde - arXiv
The aim of this book is to develop 'from the ground up' many of the major developments in quantum Shannon theory. We study quantum mechanics for quantum information theory, we give important unit protocols of teleportation, super-dense coding, etc.
(11760 views)

by Gregory J. Chaitin - Springer
The final version of a course on algorithmic information theory and the epistemology of mathematics. The book discusses the nature of mathematics in the light of information theory, and sustains the thesis that mathematics is quasi-empirical.
(13537 views)

by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(30517 views)

by Venkatesan Guruswami, Atri Rudra, Madhu Sudan - University at Buffalo
Error-correcting codes are clever ways of representing data so that one can recover the original information even if parts of it are corrupted. The basic idea is to introduce redundancy so that the original information can be recovered ...
(10169 views)