**Lectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential Equations**

by K. Yosida

**Publisher**: Tata Institute of Fundamental Research 1957**ISBN/ASIN**: B0007J817I**Number of pages**: 160

**Description**:

In these lectures, we shall be concerned with the differentiability and the representation of one-parameter semi-groups of bounded linear operators on a Banach space and with some of their applications to the initial value problem (Cauchy's problem) for differential equations, especially for the diffusion equation (heat equation) and the wave equation.

Download or read it online for free here:

**Download link**

(600KB, PDF)

## Similar books

**An Elementary Introduction to Groups and Representations**

by

**Brian C. Hall**-

**arXiv**

An elementary introduction to Lie groups, Lie algebras, and their representations. Topics include definitions and examples of Lie groups and Lie algebras, the basics of representations theory, the Baker-Campbell-Hausdorff formula, and more.

(

**13463**views)

**Group Theory**

by

**Ferdi Aryasetiawan**-

**University of Lund**

The text deals with basic Group Theory and its applications. Contents: Abstract Group Theory; Theory of Group Representations; Group Theory in Quantum Mechanics; Lie Groups; Atomic Physics; The Group SU2: Isospin; The Point Groups; The Group SU3.

(

**9973**views)

**Group Characters, Symmetric Functions, and the Hecke Algebra**

by

**David M. Goldschmidt**-

**American Mathematical Society**

The book covers a set of interrelated topics, presenting a self-contained exposition of the algebra behind the Jones polynomial along with various excursions into related areas. Directed at graduate students and mathematicians.

(

**7546**views)

**Introduction to Arithmetic Groups**

by

**Dave Witte Morris**-

**arXiv**

This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).

(

**6461**views)