Logo

Lectures on Elliptic Partial Differential Equations

Small book cover: Lectures on Elliptic Partial Differential Equations

Lectures on Elliptic Partial Differential Equations
by

Publisher: Tata Institute of Fundamental Research
ISBN/ASIN: B0007JLB4S
Number of pages: 121

Description:
In these lectures we study the boundary value problems associated with elliptic equation by using essentially L2 estimates (or abstract analogues of such estimates). We consider only linear problem, and we do not study the Schauder estimates.

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: An Introduction to Microlocal AnalysisAn Introduction to Microlocal Analysis
by - MIT
The origin of scattering theory is the study of quantum mechanical systems. The scattering theory for perturbations of the flat Laplacian is discussed with the approach via the solution of the Cauchy problem for the corresponding perturbed equation.
(5557 views)
Book cover: The Place of Partial Differential Equations in Mathematical PhysicsThe Place of Partial Differential Equations in Mathematical Physics
by - Patna University
The reason for my choosing the partial differential equations as the subject for these lectures is my wish to inspire in my audience a love for Mathematics. I give a brief historical account of the application of Mathematics to natural phenomena.
(1000 views)
Book cover: Pseudodifferential Operators and Nonlinear PDEPseudodifferential Operators and Nonlinear PDE
by - Birkhäuser Boston
Since the 1980s, the theory of pseudodifferential operators has yielded many significant results in nonlinear PDE. This monograph is devoted to a summary and reconsideration of some uses of this important tool in nonlinear PDE.
(6649 views)
Book cover: Introduction to Partial Differential EquationsIntroduction to Partial Differential Equations
by - University of Oulu
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation; Laplace Operator; Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
(7665 views)