**Nonstandard Analysis in Topology**

by Sergio Salbany, Todor Todorov

**Publisher**: arXiv 2011**Number of pages**: 48

**Description**:

We present Nonstandard Analysis in the framework of the superstructure of a given infinite set. We also present several applications of this axiomatic approach to point-set topology. Some of the topological topics such as the Hewitt real compactification and the nonstandard characterization of the sober spaces seem to be new in the literature on nonstandard analysis.

Download or read it online for free here:

**Download link**

(380KB, PDF)

## Similar books

**Real Variables: With Basic Metric Space Topology**

by

**Robert B. Ash**-

**Institute of Electrical & Electronics Engineering**

A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.

(

**54378**views)

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**9778**views)

**Topology Without Tears**

by

**Sidney A. Morris**

It provides a thorough grounding in general topology: introduction, topological spaces, the Euclidian topology, limit points, homeomorphisms, continuous mappings, metric spaces, compactness, finite products, countable products, Tychonoff's theorem.

(

**11963**views)

**Notes on Introductory Point-Set Topology**

by

**Allen Hatcher**-

**Cornell University**

These are lecture notes from the first part of an undergraduate course in 2005, covering just the most basic things. From the table of contents: Basic Point-Set Topology; Connectedness; Compactness; Quotient Spaces; Exercises.

(

**3415**views)