Logo

A Basic Introduction to Large Deviations: Theory, Applications, Simulations

Small book cover: A Basic Introduction to Large Deviations: Theory, Applications, Simulations

A Basic Introduction to Large Deviations: Theory, Applications, Simulations
by

Publisher: arXiv
Number of pages: 56

Description:
The theory of large deviations deals with the probabilities of rare events (or fluctuations) that are exponentially small as a function of some parameter, e.g., the number of random components of a system, the time over which a stochastic system is observed, the amplitude of the noise perturbing a dynamical system or the temperature of a chemical reaction.

Home page url

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Statistical Mechanics NotesStatistical Mechanics Notes
by - New Mexico Tech
From the table of contents: Fundamental Principles of Statistical Physics; Selected Applications (Classical Systems, Ideal Fermi Gas, Ideal Bose Gas, Black Body Radiation, Relativistic Degenerate Electron Gas); Introduction to Kinetic Theory.
(10258 views)
Book cover: Time-related Issues in Statistical MechanicsTime-related Issues in Statistical Mechanics
by - Clarkson University
Topics covered: The description of apparent of irreversibility; Physical origins of the arrow(s) of time; Two-time boundary value problems; The micro / macro distinction and coarse graining; Quantum mechanics with special states.
(11924 views)
Book cover: Phase Transitions and Collective PhenomenaPhase Transitions and Collective Phenomena
by - University of Cambridge
Contents -- Preface; Chapter 1: Critical Phenomena; Chapter 2: Ginzburg-Landau Theory; Chapter 3: Scaling Theory; Chapter 4: Renormalisation Group; Chapter 5: Topological Phase Transitions; Chapter 6: Functional Methods in Quantum Mechanics.
(8904 views)
Book cover: Statistical PhysicsStatistical Physics
by - Caltech
The author discusses using statistical mechanics to understand real systems, rather than ideal systems that can be solved exactly. In addition dynamics and fluctuations are considered. These notes are an attempt to summarize the main points.
(12164 views)