**Numerical Analysis for Engineering**

by Douglas W. Harder, Richard Khoury

**Publisher**: University of Waterloo 2010

**Description**:

From the table of contents: Introduction, Error Analysis, Numeric Representation, Iteration, Linear Algebra, Interpolation, Least Squares, Taylor Series, Bracketing, The Five Techniques, Root Finding, Optimization, Differentiation, Integration, Initial-value Problems, Boundary-value Problems, Linear Programming.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Iterative Methods for Sparse Linear Systems**

by

**Yousef Saad**-

**PWS**

The book gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution.

(

**7593**views)

**Introduction to the Numerical Integration of PDEs**

by

**B. Piette**-

**University of Durham**

In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.

(

**8110**views)

**Geometric Transformation of Finite Element Methods: Theory and Applications**

by

**M. Holst, M. Licht**-

**arXiv.org**

We present a new technique to apply finite element methods to partial differential equations over curved domains. Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove finite element convergence rates for the problem.

(

**1120**views)

**Solving PDEs in Python**

by

**Hans Petter Langtangen, Anders Logg**-

**Springer**

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, it guides readers through the essential steps to quickly solving a PDE in FEniCS.

(

**1411**views)