Logo

Lecture Notes in Statistical Mechanics and Mesoscopics

Small book cover: Lecture Notes in Statistical Mechanics and Mesoscopics

Lecture Notes in Statistical Mechanics and Mesoscopics
by

Publisher: arXiv
Number of pages: 119

Description:
These are the lecture notes for quantum and statistical mechanics courses that are given by DC at Ben-Gurion University. Topics covered: introduction to master equations; non-equilibrium processes; fluctuation theorems; linear response theory; adiabatic transport; the Kubo formalism; and the scattering approach to mesoscopics.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: The basic paradoxes of statistical classical physics and quantum mechanicsThe basic paradoxes of statistical classical physics and quantum mechanics
by - arXiv
Statistical classical mechanics and quantum mechanics are two developed theories that contain a number of paradoxes. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws.
(14858 views)
Book cover: Bosonization of Interacting Fermions in Arbitrary DimensionsBosonization of Interacting Fermions in Arbitrary Dimensions
by - arXiv
In this book we describe a new non-perturbative approach to the fermionic many-body problem, which can be considered as a generalization to arbitrary dimensions of the well-known bosonization technique for one-dimensional fermions.
(9621 views)
Book cover: Information Theory and Statistical PhysicsInformation Theory and Statistical Physics
by - arXiv
Lecture notes for a graduate course focusing on the relations between Information Theory and Statistical Physics. The course is aimed at EE graduate students in the area of Communications and Information Theory, or graduate students in Physics.
(13415 views)
Book cover: Statistical Mechanics NotesStatistical Mechanics Notes
by - New Mexico Tech
From the table of contents: Fundamental Principles of Statistical Physics; Selected Applications (Classical Systems, Ideal Fermi Gas, Ideal Bose Gas, Black Body Radiation, Relativistic Degenerate Electron Gas); Introduction to Kinetic Theory.
(10270 views)