Logo

Nonlinear Physics (Solitons, Chaos, Localization)

Small book cover: Nonlinear Physics (Solitons, Chaos, Localization)

Nonlinear Physics (Solitons, Chaos, Localization)
by

Publisher: Universitaet Konstanz
Number of pages: 181

Description:
This set of lectures describes some of the basic concepts mainly from the angle of condensed matter / statistical mechanics, an area which provided an impressive list of nonlinearly governed phenomena over the last fifty years - starting with the Fermi-Pasta-Ulam numerical experiment and its subsequent interpretation by Zabusky and Kruskal in terms of solitons.

Home page url

Download or read it online for free here:
Download link
(8MB, PDF)

Similar books

Book cover: Little Magnetic BookLittle Magnetic Book
by - arXiv
'Little Magnetic Book' is devoted to the spectral analysis of the magnetic Laplacian in various geometric situations. In particular the influence of the geometry on the discrete spectrum is analysed in many asymptotic regimes.
(2708 views)
Book cover: Partial Differential Equations of Mathematical PhysicsPartial Differential Equations of Mathematical Physics
by - Rice University
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.
(10476 views)
Book cover: Mathematical Physics: Problems and SolutionsMathematical Physics: Problems and Solutions
by - Samara University Press
The present Proceedings is intended to be used by the students of physical and mechanical-mathematical departments of the universities, who are interested in acquiring a deeper knowledge of the methods of mathematical and theoretical physics.
(7201 views)
Book cover: Navier-Stokes Equations: On the Existence and the Search Method for Global SolutionsNavier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(5977 views)