Introduction to Commutative Algebra
by Thomas J. Haines
Publisher: University of Maryland 2005
Number of pages: 87
Description:
Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lecture notes is to study commutative algebra and some topics in algebraic geometry in a parallel manner.
Download or read it online for free here:
Download link
(730KB, PDF)
Similar books
Frobenius Splitting in Commutative Algebra
by Karen E. Smith, Wenliang Zhang - arXiv
Frobenius splitting has inspired a vast arsenal of techniques in commutative algebra, algebraic geometry, and representation theory. The purpose of these lectures is to give a gentle introduction to Frobenius splitting for beginners.
(2539 views)
by Karen E. Smith, Wenliang Zhang - arXiv
Frobenius splitting has inspired a vast arsenal of techniques in commutative algebra, algebraic geometry, and representation theory. The purpose of these lectures is to give a gentle introduction to Frobenius splitting for beginners.
(2539 views)
Homological Conjectures
by Tom Marley, Laura Lynch - University of Nebraska - Lincoln
This course is an overview of Homological Conjectures, in particular, the Zero Divisor Conjecture, the Rigidity Conjecture, the Intersection Conjectures, Bass' Conjecture, the Superheight Conjecture, the Direct Summand Conjecture, etc.
(7005 views)
by Tom Marley, Laura Lynch - University of Nebraska - Lincoln
This course is an overview of Homological Conjectures, in particular, the Zero Divisor Conjecture, the Rigidity Conjecture, the Intersection Conjectures, Bass' Conjecture, the Superheight Conjecture, the Direct Summand Conjecture, etc.
(7005 views)
Commutative Algebra
- Wikibooks
This wikibook is intended to give an introduction to commutative algebra; i.e. it shall comprehensively describe the most important commutative algebraic objects. The axiom of choice will be used, although there is no indication that it is true.
(2202 views)
- Wikibooks
This wikibook is intended to give an introduction to commutative algebra; i.e. it shall comprehensively describe the most important commutative algebraic objects. The axiom of choice will be used, although there is no indication that it is true.
(2202 views)
Commutative Algebra
by Jacob Lurie, Akhil Mathew - Harvard University
Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.
(6168 views)
by Jacob Lurie, Akhil Mathew - Harvard University
Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.
(6168 views)