**The Geometry and Topology of Three-Manifolds**

by William P Thurston

**Publisher**: Mathematical Sciences Research Institute 2002**ISBN/ASIN**: B00072N0KI**Number of pages**: 502

**Description**:

The author's intent is to describe the very strong connection between geometry and lowdimensional topology in a way which will be useful and accessible (with some effort) to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lectures on Polyhedral Topology**

by

**John R. Stallings**-

**Tata Institute of Fundamental Research**

These notes contain: The elementary theory of finite polyhedra in real vector spaces; A theory of 'general position' (approximation of maps), based on 'non-degeneracy'. A theory of 'regular neighbourhoods' in arbitrary polyhedra; etc.

(

**4930**views)

**The Geometry and Topology of Braid Groups**

by

**Jenny Wilson**-

**University of Michigan**

Contents: Five definitions of the braid group; The topology of Fn(C); The integral cohomology of the pure braid group; Generalizations of PBn and their cohomology; Transfer and twisted coefficients; Stability in the cohomology of braid groups; etc.

(

**371**views)

**A Primer on Mapping Class Groups**

by

**Benson Farb, Dan Margalit**-

**Princeton University Press**

Our goal in this book is to explain as many important theorems, examples, and techniques as possible, as quickly and directly as possible, while at the same time giving (nearly) full details and keeping the text (nearly) selfcontained.

(

**6593**views)

**An Introduction to High Dimensional Knots**

by

**Eiji Ogasa**-

**arXiv**

This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.

(

**2490**views)