The Geometry and Topology of Three-Manifolds

Small book cover: The Geometry and Topology of Three-Manifolds

The Geometry and Topology of Three-Manifolds

Publisher: Mathematical Sciences Research Institute
Number of pages: 502

The author's intent is to describe the very strong connection between geometry and lowdimensional topology in a way which will be useful and accessible (with some effort) to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Four-manifolds, Geometries and KnotsFour-manifolds, Geometries and Knots
by - arXiv
The goal of the book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such knots.
Book cover: Diffeomorphisms of Elliptic 3-ManifoldsDiffeomorphisms of Elliptic 3-Manifolds
by - arXiv
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
Book cover: An Introduction to High Dimensional KnotsAn Introduction to High Dimensional Knots
by - arXiv
This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.
Book cover: Knot DiagrammaticsKnot Diagrammatics
by - arXiv
This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.