**A Primer of Commutative Algebra**

by J.S. Milne

2011**Number of pages**: 75

**Description**:

These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses. However, they are quite concise.

Download or read it online for free here:

**Download link**

(690KB, PDF)

## Similar books

**Commutative Algebra and Noncommutative Algebraic Geometry**

by

**David Eisenbud, et al.**-

**Cambridge University Press**

The books cover birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, tilting theory, etc. These volumes reflect the lively interaction between the subjects.

(

**1263**views)

**A Quick Review of Commutative Algebra**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology, Bombay**

These notes give a rapid review of the rudiments of classical commutative algebra. Some of the main results whose proofs are outlined here are: Hilbert basis theorem, primary decomposition of ideals in noetherian rings, Krull intersection theorem.

(

**6206**views)

**Determinantal Rings**

by

**Winfried Bruns, Udo Vetter**-

**Springer**

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.

(

**6187**views)

**Introduction to Commutative Algebra**

by

**Thomas J. Haines**-

**University of Maryland**

Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lectures is to study commutative algebra and some topics in algebraic geometry in a parallel manner.

(

**5811**views)